Initial-boundary value problems describing mobile carrier transport in semiconductor devices
Commentationes Mathematicae Universitatis Carolinae, Tome 26 (1985) no. 1, pp. 75-89 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 35B40, 35D05, 35Q20, 35Q99, 82A99
@article{CMUC_1985_26_1_a4,
     author = {Gr\"oger, Konrad},
     title = {Initial-boundary value problems describing mobile carrier transport in semiconductor devices},
     journal = {Commentationes Mathematicae Universitatis Carolinae},
     pages = {75--89},
     year = {1985},
     volume = {26},
     number = {1},
     mrnumber = {797294},
     zbl = {0581.35069},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMUC_1985_26_1_a4/}
}
TY  - JOUR
AU  - Gröger, Konrad
TI  - Initial-boundary value problems describing mobile carrier transport in semiconductor devices
JO  - Commentationes Mathematicae Universitatis Carolinae
PY  - 1985
SP  - 75
EP  - 89
VL  - 26
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMUC_1985_26_1_a4/
LA  - en
ID  - CMUC_1985_26_1_a4
ER  - 
%0 Journal Article
%A Gröger, Konrad
%T Initial-boundary value problems describing mobile carrier transport in semiconductor devices
%J Commentationes Mathematicae Universitatis Carolinae
%D 1985
%P 75-89
%V 26
%N 1
%U http://geodesic.mathdoc.fr/item/CMUC_1985_26_1_a4/
%G en
%F CMUC_1985_26_1_a4
Gröger, Konrad. Initial-boundary value problems describing mobile carrier transport in semiconductor devices. Commentationes Mathematicae Universitatis Carolinae, Tome 26 (1985) no. 1, pp. 75-89. http://geodesic.mathdoc.fr/item/CMUC_1985_26_1_a4/

[1] N. D. ALIKAKOS: An application of the invariance principle to reaction-diffusion equations. J. Diff. Equations 33 (1979), 201-225. | MR | Zbl

[2] H. ELSCHNER A. MÖSCHWITZER A. REIBIGER: Reehnergestützte Analyse in der Elektronik. Verlag Technik Berlin 1977.

[3] W. FICHTNER D. ROSE (Ed.): IEEE Trans. Electron Devices ED-30 (1983).

[4] H. GAJEWSKI: On existence, uniqueness and asymptotic behavior of solutions of the basic equations for carrier transport in semiconductors. Zeitschr. Angew. Math. Mech., to appear. | MR | Zbl

[5] H. GAJEWSKI: On the existence of steady state carrier distributions in semiconductors. In: Problems und Methoden der Mathematlschen Physik, Teubner-Texte zur Mathematik, to appear. | MR | Zbl

[6] H. GAJEWSKI: On uniqueness, stability and construction of steady state carrier distributions in semiconductors. to appear.

[7] H. GAJEWSKI K. GRÖGER: On the basic equations for carrier transport in semiconductors. submitted to J. Math. Anal. Appl. | MR

[8] B. V. GOKHALE: Numerical solutions for a one-dimensional silicon p-n-p transistor. IEEE Trans. Electron Devices ED-17 (1970), 594-602.

[9] P. GRISVARD: Behavior of the solutions of an elliptic boundary value problem in a polygonal or polyhedral domain. In: numerical solution of partial differential equations III (1976), 207-274. | MR | Zbl

[10] K. GRÖGER: Asymptotic behavior of solutions to a class of diffusion-reaction equations. Math. Nachr. 112 (1983), 19-33. | MR

[11] P. HORN R. JACKSON: General mass action kinetics. Arch. Rat. Mech. Anal. 47 (1972), 81-116. | MR

[12] M. S. MOCK: On equations describing steady-state carrier distributions in a semiconductor device. Comm. Pure Appl. Math. 25 (1972), 781-792. | MR

[13] M. S. MOCK: An initial value problem from semiconductor device theory. SIAM J. Math. Anal. 5 (1974), 597-612. | MR | Zbl

[14] M. S. MOCK: Asymptotic behavior of solutions of transport equations for semiconductor devices. J. Math. Anal. Appl. 49 (1975), 215-225. | MR | Zbl

[15] M. S. MOCK: Analysis of mathematical models of semiconductor devices. Boole Press Dublin 1983. | MR | Zbl

[16] J. MOSER: A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations. Comm. Pure Appl. Math. 13 (1960), 457-468. | MR | Zbl

[17] W. van ROOSBROECK: Theory of flow of electrons and holes in germanium and other semiconductors. Bell Syst. Tech. J. 29 (1950), 560-607.

[18] T. I. SEIDMAN: Steady state solutions of diffusion-reaction systems with electrostatic convection. Nonlinear Analysis 4 (1980), 623-637. | MR | Zbl