Does ${\bf SP}\ K\supseteq\ {\bf PS}\ K$ imply axiom of choice?
Commentationes Mathematicae Universitatis Carolinae, Tome 21 (1980) no. 4, pp. 699-706
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{CMUC_1980__21_4_a5,
author = {Andr\'eka, H. and N\'emeti, I.},
title = {Does ${\bf SP}\ K\supseteq\ {\bf PS}\ K$ imply axiom of choice?},
journal = {Commentationes Mathematicae Universitatis Carolinae},
pages = {699--706},
publisher = {mathdoc},
volume = {21},
number = {4},
year = {1980},
mrnumber = {597759},
zbl = {0453.04003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMUC_1980__21_4_a5/}
}
TY - JOUR
AU - Andréka, H.
AU - Németi, I.
TI - Does ${\bf SP}\ K\supseteq\ {\bf PS}\ K$ imply axiom of choice?
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1980
SP - 699
EP - 706
VL - 21
IS - 4
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/CMUC_1980__21_4_a5/
LA - en
ID - CMUC_1980__21_4_a5
ER -
Andréka, H.; Németi, I. Does ${\bf SP}\ K\supseteq\ {\bf PS}\ K$ imply axiom of choice?. Commentationes Mathematicae Universitatis Carolinae, Tome 21 (1980) no. 4, pp. 699-706. http://geodesic.mathdoc.fr/item/CMUC_1980__21_4_a5/