Cauchy's residue theorem for a class of real valued functions
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 4, pp. 1043-1048.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $[ a,b] $ be an interval in $\mathbb R$ and let $F$ be a real valued function defined at the endpoints of $[a,b]$ and with a certain number of discontinuities within $[ a,b] $. Assuming $F$ to be differentiable on a set $[ a,b] \backslash E$ to the derivative $f$, where $E$ is a subset of $[ a,b] $ at whose points $F$ can take values $\pm \infty $ or not be defined at all, we adopt the convention that $F$ and $f$ are equal to $0$ at all points of $E$ and show that $\mathcal {KH}\hbox {\rm -vt}\int _a^bf=F( b) -F( a) $, where $\mathcal {KH}\hbox {\rm -vt}$ denotes the total value of the {\it Kurzweil-Henstock} integral. The paper ends with a few examples that illustrate the theory.
Classification : 26A24, 26A39
Keywords: Kurzweil-Henstock integral; Cauchy's residue theorem
@article{CMJ_2010__60_4_a11,
     author = {Sari\'c, Branko},
     title = {Cauchy's residue theorem for a class of real valued functions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1043--1048},
     publisher = {mathdoc},
     volume = {60},
     number = {4},
     year = {2010},
     mrnumber = {2738965},
     zbl = {1224.26029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010__60_4_a11/}
}
TY  - JOUR
AU  - Sarić, Branko
TI  - Cauchy's residue theorem for a class of real valued functions
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 1043
EP  - 1048
VL  - 60
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010__60_4_a11/
LA  - en
ID  - CMJ_2010__60_4_a11
ER  - 
%0 Journal Article
%A Sarić, Branko
%T Cauchy's residue theorem for a class of real valued functions
%J Czechoslovak Mathematical Journal
%D 2010
%P 1043-1048
%V 60
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2010__60_4_a11/
%G en
%F CMJ_2010__60_4_a11
Sarić, Branko. Cauchy's residue theorem for a class of real valued functions. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 4, pp. 1043-1048. http://geodesic.mathdoc.fr/item/CMJ_2010__60_4_a11/