On integral sum graphs with a saturated vertex
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 3, pp. 669-674.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

As introduced by F. Harary in 1994, a graph $ G$ is said to be an $integral$ $ sum$ $ graph$ if its vertices can be given a labeling $f$ with distinct integers so that for any two distinct vertices $u$ and $v$ of $G$, $uv$ is an edge of $G$ if and only if $ f(u)+f(v)=f(w)$ for some vertex $w$ in $G$. \endgraf We prove that every integral sum graph with a saturated vertex, except the complete graph $K_3$, has edge-chromatic number equal to its maximum degree. (A vertex of a graph $G$ is said to be {\it saturated} if it is adjacent to every other vertex of $G$.) Some direct corollaries are also presented.
Classification : 05C15, 05C78
Keywords: integral sum graph; saturated vertex; edge-chromatic number
@article{CMJ_2010__60_3_a5,
     author = {Chen, Zhibo},
     title = {On integral sum graphs with a saturated vertex},
     journal = {Czechoslovak Mathematical Journal},
     pages = {669--674},
     publisher = {mathdoc},
     volume = {60},
     number = {3},
     year = {2010},
     mrnumber = {2672408},
     zbl = {1224.05439},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010__60_3_a5/}
}
TY  - JOUR
AU  - Chen, Zhibo
TI  - On integral sum graphs with a saturated vertex
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 669
EP  - 674
VL  - 60
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010__60_3_a5/
LA  - en
ID  - CMJ_2010__60_3_a5
ER  - 
%0 Journal Article
%A Chen, Zhibo
%T On integral sum graphs with a saturated vertex
%J Czechoslovak Mathematical Journal
%D 2010
%P 669-674
%V 60
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2010__60_3_a5/
%G en
%F CMJ_2010__60_3_a5
Chen, Zhibo. On integral sum graphs with a saturated vertex. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 3, pp. 669-674. http://geodesic.mathdoc.fr/item/CMJ_2010__60_3_a5/