A cohomological Steinness criterion for holomorphically spreadable complex spaces
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 3, pp. 655-667.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $X$ be a complex space of dimension $n$, not necessarily reduced, whose cohomology groups $H^1(X,{\cal O}), \ldots , H^{n-1}(X,{\cal O})$ are of finite dimension (as complex vector spaces). We show that $X$ is Stein (resp., $1$-convex) if, and only if, $X$ is holomorphically spreadable (resp., $X$ is holomorphically spreadable at infinity). \endgraf This, on the one hand, generalizes a known characterization of Stein spaces due to Siu, Laufer, and Simha and, on the other hand, it provides a new criterion for $1$-convexity.
Classification : 32C15, 32C35, 32E10, 32L20
Keywords: Stein space; 1-convex space; branched Riemannian domain; holomorphically spreadable complex space; structurally acyclic space
@article{CMJ_2010__60_3_a4,
     author = {V\^aj\^aitu, Viorel},
     title = {A cohomological {Steinness} criterion for holomorphically spreadable complex spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {655--667},
     publisher = {mathdoc},
     volume = {60},
     number = {3},
     year = {2010},
     mrnumber = {2672407},
     zbl = {1224.32014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010__60_3_a4/}
}
TY  - JOUR
AU  - Vâjâitu, Viorel
TI  - A cohomological Steinness criterion for holomorphically spreadable complex spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 655
EP  - 667
VL  - 60
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010__60_3_a4/
LA  - en
ID  - CMJ_2010__60_3_a4
ER  - 
%0 Journal Article
%A Vâjâitu, Viorel
%T A cohomological Steinness criterion for holomorphically spreadable complex spaces
%J Czechoslovak Mathematical Journal
%D 2010
%P 655-667
%V 60
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2010__60_3_a4/
%G en
%F CMJ_2010__60_3_a4
Vâjâitu, Viorel. A cohomological Steinness criterion for holomorphically spreadable complex spaces. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 3, pp. 655-667. http://geodesic.mathdoc.fr/item/CMJ_2010__60_3_a4/