Counting irreducible polynomials over finite fields
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 3, pp. 881-886
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper we generalize the method used to prove the Prime Number Theorem to deal with finite fields, and prove the following theorem: \[ \pi (x)= \frac q{q - 1}\frac x{{\log _q x}}+ \frac q{(q - 1)^2}\frac x{{\log _q^2 x}}+O\Bigl (\frac {x}{{\log _q^3 x}}\Bigr ),\quad x=q^n\rightarrow \infty \] where $\pi (x)$ denotes the number of monic irreducible polynomials in $F_q [t]$ with norm $ \le x$.
Classification :
11T55
Keywords: finite fields; distribution of irreducible polynomials; residue
Keywords: finite fields; distribution of irreducible polynomials; residue
@article{CMJ_2010__60_3_a18,
author = {Wang, Qichun and Kan, Haibin},
title = {Counting irreducible polynomials over finite fields},
journal = {Czechoslovak Mathematical Journal},
pages = {881--886},
publisher = {mathdoc},
volume = {60},
number = {3},
year = {2010},
mrnumber = {2672421},
zbl = {1224.11086},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010__60_3_a18/}
}
Wang, Qichun; Kan, Haibin. Counting irreducible polynomials over finite fields. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 3, pp. 881-886. http://geodesic.mathdoc.fr/item/CMJ_2010__60_3_a18/