On nonmeasurable images
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 423-434
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $(X,\mathbb I)$ be a Polish ideal space and let $T$ be any set. We show that under some conditions on a relation $R\subseteq T^2\times X$ it is possible to find a set $A\subseteq T$ such that $R(A^2)$ is completely $\mathbb I $-nonmeasurable, i.e, it is $\mathbb I$-nonmeasurable in every positive Borel set. We also obtain such a set $A\subseteq T$ simultaneously for continuum many relations $(R_\alpha )_{\alpha 2^\omega }.$ Our results generalize those from the papers of K. Ciesielski, H. Fejzić, C. Freiling and M. Kysiak.
Classification :
03E35, 03E75, 28A99
Keywords: nonmeasurable set; Bernstein set; Polish ideal space
Keywords: nonmeasurable set; Bernstein set; Polish ideal space
@article{CMJ_2010__60_2_a9,
author = {Ra{\l}owski, Robert and \.Zeberski, Szymon},
title = {On nonmeasurable images},
journal = {Czechoslovak Mathematical Journal},
pages = {423--434},
publisher = {mathdoc},
volume = {60},
number = {2},
year = {2010},
mrnumber = {2657959},
zbl = {1224.03028},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010__60_2_a9/}
}
Rałowski, Robert; Żeberski, Szymon. On nonmeasurable images. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 423-434. http://geodesic.mathdoc.fr/item/CMJ_2010__60_2_a9/