On nonmeasurable images
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 423-434.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $(X,\mathbb I)$ be a Polish ideal space and let $T$ be any set. We show that under some conditions on a relation $R\subseteq T^2\times X$ it is possible to find a set $A\subseteq T$ such that $R(A^2)$ is completely $\mathbb I $-nonmeasurable, i.e, it is $\mathbb I$-nonmeasurable in every positive Borel set. We also obtain such a set $A\subseteq T$ simultaneously for continuum many relations $(R_\alpha )_{\alpha 2^\omega }.$ Our results generalize those from the papers of K. Ciesielski, H. Fejzić, C. Freiling and M. Kysiak.
Classification : 03E35, 03E75, 28A99
Keywords: nonmeasurable set; Bernstein set; Polish ideal space
@article{CMJ_2010__60_2_a9,
     author = {Ra{\l}owski, Robert and \.Zeberski, Szymon},
     title = {On nonmeasurable images},
     journal = {Czechoslovak Mathematical Journal},
     pages = {423--434},
     publisher = {mathdoc},
     volume = {60},
     number = {2},
     year = {2010},
     mrnumber = {2657959},
     zbl = {1224.03028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010__60_2_a9/}
}
TY  - JOUR
AU  - Rałowski, Robert
AU  - Żeberski, Szymon
TI  - On nonmeasurable images
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 423
EP  - 434
VL  - 60
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010__60_2_a9/
LA  - en
ID  - CMJ_2010__60_2_a9
ER  - 
%0 Journal Article
%A Rałowski, Robert
%A Żeberski, Szymon
%T On nonmeasurable images
%J Czechoslovak Mathematical Journal
%D 2010
%P 423-434
%V 60
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2010__60_2_a9/
%G en
%F CMJ_2010__60_2_a9
Rałowski, Robert; Żeberski, Szymon. On nonmeasurable images. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 423-434. http://geodesic.mathdoc.fr/item/CMJ_2010__60_2_a9/