On the second Laplacian spectral moment of a graph
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 401-410.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Kragujevac (M. L. Kragujevac: On the Laplacian energy of a graph, Czech. Math. J. {\it 56}({\it 131}) (2006), 1207--1213) gave the definition of Laplacian energy of a graph $G$ and proved $LE(G)\geq 6n-8$; equality holds if and only if $G=P_n$. In this paper we consider the relation between the Laplacian energy and the chromatic number of a graph $G$ and give an upper bound for the Laplacian energy on a connected graph.
Classification : 05C50
Keywords: Laplacian eigenvalues; Laplacian energy; chromatic number; complement
@article{CMJ_2010__60_2_a7,
     author = {Liu, Ying and Sun, Yu Qin},
     title = {On the second {Laplacian} spectral moment of a graph},
     journal = {Czechoslovak Mathematical Journal},
     pages = {401--410},
     publisher = {mathdoc},
     volume = {60},
     number = {2},
     year = {2010},
     mrnumber = {2657957},
     zbl = {1224.05312},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010__60_2_a7/}
}
TY  - JOUR
AU  - Liu, Ying
AU  - Sun, Yu Qin
TI  - On the second Laplacian spectral moment of a graph
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 401
EP  - 410
VL  - 60
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010__60_2_a7/
LA  - en
ID  - CMJ_2010__60_2_a7
ER  - 
%0 Journal Article
%A Liu, Ying
%A Sun, Yu Qin
%T On the second Laplacian spectral moment of a graph
%J Czechoslovak Mathematical Journal
%D 2010
%P 401-410
%V 60
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2010__60_2_a7/
%G en
%F CMJ_2010__60_2_a7
Liu, Ying; Sun, Yu Qin. On the second Laplacian spectral moment of a graph. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 401-410. http://geodesic.mathdoc.fr/item/CMJ_2010__60_2_a7/