On the second Laplacian spectral moment of a graph
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 401-410
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Kragujevac (M. L. Kragujevac: On the Laplacian energy of a graph, Czech. Math. J. {\it 56}({\it 131}) (2006), 1207--1213) gave the definition of Laplacian energy of a graph $G$ and proved $LE(G)\geq 6n-8$; equality holds if and only if $G=P_n$. In this paper we consider the relation between the Laplacian energy and the chromatic number of a graph $G$ and give an upper bound for the Laplacian energy on a connected graph.
Classification :
05C50
Keywords: Laplacian eigenvalues; Laplacian energy; chromatic number; complement
Keywords: Laplacian eigenvalues; Laplacian energy; chromatic number; complement
@article{CMJ_2010__60_2_a7,
author = {Liu, Ying and Sun, Yu Qin},
title = {On the second {Laplacian} spectral moment of a graph},
journal = {Czechoslovak Mathematical Journal},
pages = {401--410},
publisher = {mathdoc},
volume = {60},
number = {2},
year = {2010},
mrnumber = {2657957},
zbl = {1224.05312},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010__60_2_a7/}
}
Liu, Ying; Sun, Yu Qin. On the second Laplacian spectral moment of a graph. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 401-410. http://geodesic.mathdoc.fr/item/CMJ_2010__60_2_a7/