On generalized Jordan derivations of Lie triple systems
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 541-547.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Under some conditions we prove that every generalized Jordan triple derivation on a Lie triple system is a generalized derivation. Specially, we conclude that every Jordan triple $\theta $-derivation on a Lie triple system is a $\theta $-derivation.
Classification : 16W25, 17A36, 17A40
Keywords: Lie triple system; $(\varphi, \psi )$-derivation; Jordan triple $(\varphi, \psi )$-derivation; $\theta $-derivation; Jordan triple $\theta $-derivation
@article{CMJ_2010__60_2_a18,
     author = {Najati, Abbas},
     title = {On generalized {Jordan} derivations of {Lie} triple systems},
     journal = {Czechoslovak Mathematical Journal},
     pages = {541--547},
     publisher = {mathdoc},
     volume = {60},
     number = {2},
     year = {2010},
     mrnumber = {2657968},
     zbl = {1224.17008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010__60_2_a18/}
}
TY  - JOUR
AU  - Najati, Abbas
TI  - On generalized Jordan derivations of Lie triple systems
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 541
EP  - 547
VL  - 60
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010__60_2_a18/
LA  - en
ID  - CMJ_2010__60_2_a18
ER  - 
%0 Journal Article
%A Najati, Abbas
%T On generalized Jordan derivations of Lie triple systems
%J Czechoslovak Mathematical Journal
%D 2010
%P 541-547
%V 60
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2010__60_2_a18/
%G en
%F CMJ_2010__60_2_a18
Najati, Abbas. On generalized Jordan derivations of Lie triple systems. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 541-547. http://geodesic.mathdoc.fr/item/CMJ_2010__60_2_a18/