Structure of unitary groups over finite group rings and its application
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 495-512
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper, we determine all the normal forms of Hermitian matrices over finite group rings $R=F_{q^2}G$, where $q=p^{\alpha }$, $G$ is a commutative $p$-group with order $p^{\beta }$. Furthermore, using the normal forms of Hermitian matrices, we study the structure of unitary group over $R$ through investigating its BN-pair and order. As an application, we construct a Cartesian authentication code and compute its size parameters.
Classification :
19G24, 20E42, 94A60
Keywords: finite group ring; BN-pair; authentication code
Keywords: finite group ring; BN-pair; authentication code
@article{CMJ_2010__60_2_a14,
author = {Nan, Jizhu and Qin, Yufang},
title = {Structure of unitary groups over finite group rings and its application},
journal = {Czechoslovak Mathematical Journal},
pages = {495--512},
publisher = {mathdoc},
volume = {60},
number = {2},
year = {2010},
mrnumber = {2657964},
zbl = {1208.20047},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010__60_2_a14/}
}
TY - JOUR AU - Nan, Jizhu AU - Qin, Yufang TI - Structure of unitary groups over finite group rings and its application JO - Czechoslovak Mathematical Journal PY - 2010 SP - 495 EP - 512 VL - 60 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMJ_2010__60_2_a14/ LA - en ID - CMJ_2010__60_2_a14 ER -
Nan, Jizhu; Qin, Yufang. Structure of unitary groups over finite group rings and its application. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 495-512. http://geodesic.mathdoc.fr/item/CMJ_2010__60_2_a14/