Quasi-permutation polynomials
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 457-488.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A quasi-permutation polynomial is a polynomial which is a bijection from one subset of a finite field onto another with the same number of elements. This is a natural generalization of the familiar permutation polynomials. Basic properties of quasi-permutation polynomials are derived. General criteria for a quasi-permutation polynomial extending the well-known Hermite's criterion for permutation polynomials as well as a number of other criteria depending on the permuted domain and range are established. Different types of quasi-permutation polynomials and the problem of counting quasi-permutation polynomials of fixed degree are investigated.
Classification : 11T55, 12E05, 12Y05
Keywords: finite fields; permutation polynomials
@article{CMJ_2010__60_2_a12,
     author = {Laohakosol, Vichian and Janphaisaeng, Suphawan},
     title = {Quasi-permutation polynomials},
     journal = {Czechoslovak Mathematical Journal},
     pages = {457--488},
     publisher = {mathdoc},
     volume = {60},
     number = {2},
     year = {2010},
     mrnumber = {2657962},
     zbl = {1224.11096},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010__60_2_a12/}
}
TY  - JOUR
AU  - Laohakosol, Vichian
AU  - Janphaisaeng, Suphawan
TI  - Quasi-permutation polynomials
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 457
EP  - 488
VL  - 60
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010__60_2_a12/
LA  - en
ID  - CMJ_2010__60_2_a12
ER  - 
%0 Journal Article
%A Laohakosol, Vichian
%A Janphaisaeng, Suphawan
%T Quasi-permutation polynomials
%J Czechoslovak Mathematical Journal
%D 2010
%P 457-488
%V 60
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2010__60_2_a12/
%G en
%F CMJ_2010__60_2_a12
Laohakosol, Vichian; Janphaisaeng, Suphawan. Quasi-permutation polynomials. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 457-488. http://geodesic.mathdoc.fr/item/CMJ_2010__60_2_a12/