Components and inductive dimensions of compact spaces
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 445-456
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
It is shown that for every pair of natural numbers $m\geq n\geq 1$, there exists a compact Fréchet space $X_{m,n}$ such that \item {(a)} $\mathop{\rm dim}X_{m,n}=n$, $\mathop{\rm ind}X_{m,n}=\mathop{\rm Ind}X_{m,n}=m$, and \item {(b)} every component of $X_{m,n}$ is homeomorphic to the $n$-dimensional cube $I^n$. \endgraf \noindent This yields new counter-examples to the theorem on dimension-lowering maps in the cases of inductive dimensions.
Classification :
54F45
Keywords: inductive dimension; theorem on dimension-lowering maps; component.
Keywords: inductive dimension; theorem on dimension-lowering maps; component.
@article{CMJ_2010__60_2_a11,
author = {Krzempek, Jerzy},
title = {Components and inductive dimensions of compact spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {445--456},
publisher = {mathdoc},
volume = {60},
number = {2},
year = {2010},
mrnumber = {2657961},
zbl = {1224.54077},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010__60_2_a11/}
}
Krzempek, Jerzy. Components and inductive dimensions of compact spaces. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 445-456. http://geodesic.mathdoc.fr/item/CMJ_2010__60_2_a11/