Components and inductive dimensions of compact spaces
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 445-456.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It is shown that for every pair of natural numbers $m\geq n\geq 1$, there exists a compact Fréchet space $X_{m,n}$ such that \item {(a)} $\mathop{\rm dim}X_{m,n}=n$, $\mathop{\rm ind}X_{m,n}=\mathop{\rm Ind}X_{m,n}=m$, and \item {(b)} every component of $X_{m,n}$ is homeomorphic to the $n$-dimensional cube $I^n$. \endgraf \noindent This yields new counter-examples to the theorem on dimension-lowering maps in the cases of inductive dimensions.
Classification : 54F45
Keywords: inductive dimension; theorem on dimension-lowering maps; component.
@article{CMJ_2010__60_2_a11,
     author = {Krzempek, Jerzy},
     title = {Components and inductive dimensions of compact spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {445--456},
     publisher = {mathdoc},
     volume = {60},
     number = {2},
     year = {2010},
     mrnumber = {2657961},
     zbl = {1224.54077},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010__60_2_a11/}
}
TY  - JOUR
AU  - Krzempek, Jerzy
TI  - Components and inductive dimensions of compact spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 445
EP  - 456
VL  - 60
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010__60_2_a11/
LA  - en
ID  - CMJ_2010__60_2_a11
ER  - 
%0 Journal Article
%A Krzempek, Jerzy
%T Components and inductive dimensions of compact spaces
%J Czechoslovak Mathematical Journal
%D 2010
%P 445-456
%V 60
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2010__60_2_a11/
%G en
%F CMJ_2010__60_2_a11
Krzempek, Jerzy. Components and inductive dimensions of compact spaces. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 2, pp. 445-456. http://geodesic.mathdoc.fr/item/CMJ_2010__60_2_a11/