On maximal monotone operators with relatively compact range
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 105-116.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It is shown that every maximal monotone operator on a real Banach space with relatively compact range is of type NI. Moreover, if the space has a separable dual space then every maximally monotone operator $T$ can be approximated by a sequence of maximal monotone operators of type NI, which converge to $T$ in a reasonable sense (in the sense of Kuratowski-Painleve convergence).
Classification : 47H05
Keywords: nonlinear operators; maximal monotone operators; range of maximal monotone operator; an approximation method of maximal monotone operators
@article{CMJ_2010__60_1_a8,
     author = {Zagrodny, Dariusz},
     title = {On maximal monotone operators with relatively compact range},
     journal = {Czechoslovak Mathematical Journal},
     pages = {105--116},
     publisher = {mathdoc},
     volume = {60},
     number = {1},
     year = {2010},
     mrnumber = {2595075},
     zbl = {1220.47068},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a8/}
}
TY  - JOUR
AU  - Zagrodny, Dariusz
TI  - On maximal monotone operators with relatively compact range
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 105
EP  - 116
VL  - 60
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a8/
LA  - en
ID  - CMJ_2010__60_1_a8
ER  - 
%0 Journal Article
%A Zagrodny, Dariusz
%T On maximal monotone operators with relatively compact range
%J Czechoslovak Mathematical Journal
%D 2010
%P 105-116
%V 60
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a8/
%G en
%F CMJ_2010__60_1_a8
Zagrodny, Dariusz. On maximal monotone operators with relatively compact range. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 105-116. http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a8/