Symmetric sign patterns with maximal inertias
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 101-104
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The inertia of an $n$ by $n$ symmetric sign pattern is called maximal when it is not a proper subset of the inertia of another symmetric sign pattern of order $n$. In this note we classify all the maximal inertias for symmetric sign patterns of order $n$, and identify symmetric sign patterns with maximal inertias by using a rank-one perturbation.
Classification :
15A18, 15B35
Keywords: eigenvalue; inertia; maximal inertia; rank-one perturbation; symmetric sign pattern
Keywords: eigenvalue; inertia; maximal inertia; rank-one perturbation; symmetric sign pattern
@article{CMJ_2010__60_1_a7,
author = {Kim, In-Jae and Waters, Charles},
title = {Symmetric sign patterns with maximal inertias},
journal = {Czechoslovak Mathematical Journal},
pages = {101--104},
publisher = {mathdoc},
volume = {60},
number = {1},
year = {2010},
mrnumber = {2595074},
zbl = {1224.15061},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a7/}
}
Kim, In-Jae; Waters, Charles. Symmetric sign patterns with maximal inertias. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 101-104. http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a7/