On the diameter of the Banach-Mazur set
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 95-100
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
On every subspace of $l_{\infty }(\mathbb N)$ which contains an uncountable $\omega $-independent set, we construct equivalent norms whose Banach-Mazur distance is as large as required. Under Martin's Maximum Axiom (MM), it follows that the Banach-Mazur diameter of the set of equivalent norms on every infinite-dimensional subspace of $l_{\infty }(\mathbb N)$ is infinite. This provides a partial answer to a question asked by Johnson and Odell.
Classification :
03E50, 46B03, 46B20, 46B26
Keywords: Banach-Mazur diameter; elastic Banach spaces; Martin's Maximum axiom
Keywords: Banach-Mazur diameter; elastic Banach spaces; Martin's Maximum axiom
@article{CMJ_2010__60_1_a6,
author = {Godefroy, Gilles},
title = {On the diameter of the {Banach-Mazur} set},
journal = {Czechoslovak Mathematical Journal},
pages = {95--100},
publisher = {mathdoc},
volume = {60},
number = {1},
year = {2010},
mrnumber = {2595073},
zbl = {1224.46012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a6/}
}
Godefroy, Gilles. On the diameter of the Banach-Mazur set. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 95-100. http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a6/