On the diameter of the Banach-Mazur set
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 95-100.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

On every subspace of $l_{\infty }(\mathbb N)$ which contains an uncountable $\omega $-independent set, we construct equivalent norms whose Banach-Mazur distance is as large as required. Under Martin's Maximum Axiom (MM), it follows that the Banach-Mazur diameter of the set of equivalent norms on every infinite-dimensional subspace of $l_{\infty }(\mathbb N)$ is infinite. This provides a partial answer to a question asked by Johnson and Odell.
Classification : 03E50, 46B03, 46B20, 46B26
Keywords: Banach-Mazur diameter; elastic Banach spaces; Martin's Maximum axiom
@article{CMJ_2010__60_1_a6,
     author = {Godefroy, Gilles},
     title = {On the diameter of the {Banach-Mazur} set},
     journal = {Czechoslovak Mathematical Journal},
     pages = {95--100},
     publisher = {mathdoc},
     volume = {60},
     number = {1},
     year = {2010},
     mrnumber = {2595073},
     zbl = {1224.46012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a6/}
}
TY  - JOUR
AU  - Godefroy, Gilles
TI  - On the diameter of the Banach-Mazur set
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 95
EP  - 100
VL  - 60
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a6/
LA  - en
ID  - CMJ_2010__60_1_a6
ER  - 
%0 Journal Article
%A Godefroy, Gilles
%T On the diameter of the Banach-Mazur set
%J Czechoslovak Mathematical Journal
%D 2010
%P 95-100
%V 60
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a6/
%G en
%F CMJ_2010__60_1_a6
Godefroy, Gilles. On the diameter of the Banach-Mazur set. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 95-100. http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a6/