The triadjoint of an orthosymmetric bimorphism
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 85-94
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $A$ and $B$ be two Archimedean vector lattices and let $( A^{\prime }) _n'$ and $( B') _n'$ be their order continuous order biduals. If $\Psi \colon A\times A\rightarrow B$ is a positive orthosymmetric bimorphism, then the triadjoint $\Psi ^{\ast \ast \ast }\colon ( A') _n'\times ( A') _n'\rightarrow ( B') _n'$ of $\Psi $ is inevitably orthosymmetric. This leads to a new and short proof of the commutativity of almost $f$-algebras.
@article{CMJ_2010__60_1_a5,
author = {Toumi, Mohamed Ali},
title = {The triadjoint of an orthosymmetric bimorphism},
journal = {Czechoslovak Mathematical Journal},
pages = {85--94},
publisher = {mathdoc},
volume = {60},
number = {1},
year = {2010},
mrnumber = {2595072},
zbl = {1224.06036},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a5/}
}
Toumi, Mohamed Ali. The triadjoint of an orthosymmetric bimorphism. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 85-94. http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a5/