The triadjoint of an orthosymmetric bimorphism
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 85-94.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $A$ and $B$ be two Archimedean vector lattices and let $( A^{\prime }) _n'$ and $( B') _n'$ be their order continuous order biduals. If $\Psi \colon A\times A\rightarrow B$ is a positive orthosymmetric bimorphism, then the triadjoint $\Psi ^{\ast \ast \ast }\colon ( A') _n'\times ( A') _n'\rightarrow ( B') _n'$ of $\Psi $ is inevitably orthosymmetric. This leads to a new and short proof of the commutativity of almost $f$-algebras.
Classification : 06F25, 47B65
Keywords: almost $f$-algebra orthosymmetric bimorphism
@article{CMJ_2010__60_1_a5,
     author = {Toumi, Mohamed Ali},
     title = {The triadjoint of an orthosymmetric bimorphism},
     journal = {Czechoslovak Mathematical Journal},
     pages = {85--94},
     publisher = {mathdoc},
     volume = {60},
     number = {1},
     year = {2010},
     mrnumber = {2595072},
     zbl = {1224.06036},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a5/}
}
TY  - JOUR
AU  - Toumi, Mohamed Ali
TI  - The triadjoint of an orthosymmetric bimorphism
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 85
EP  - 94
VL  - 60
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a5/
LA  - en
ID  - CMJ_2010__60_1_a5
ER  - 
%0 Journal Article
%A Toumi, Mohamed Ali
%T The triadjoint of an orthosymmetric bimorphism
%J Czechoslovak Mathematical Journal
%D 2010
%P 85-94
%V 60
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a5/
%G en
%F CMJ_2010__60_1_a5
Toumi, Mohamed Ali. The triadjoint of an orthosymmetric bimorphism. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 85-94. http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a5/