Weak selections and weak orderability of function spaces
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 273-281.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It is proved that for a zero-dimensional space $X$, the function space $C_p(X,2)$ has a Vietoris continuous selection for its hyperspace of at most 2-point sets if and only if $X$ is separable. This provides the complete affirmative solution to a question posed by Tamariz-Mascarúa. It is also obtained that for a strongly zero-dimensional metrizable space $E$, the function space $C_p(X,E)$ is weakly orderable if and only if its hyperspace of at most 2-point sets has a Vietoris continuous selection. This provides a partial positive answer to a question posed by van Mill and Wattel.
Classification : 54B20, 54C35, 54C65, 54F05
Keywords: Vietoris hyperspace; continuous selection; function space; weakly orderable space
@article{CMJ_2010__60_1_a21,
     author = {Gutev, Valentin},
     title = {Weak selections and weak orderability of function spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {273--281},
     publisher = {mathdoc},
     volume = {60},
     number = {1},
     year = {2010},
     mrnumber = {2595088},
     zbl = {1224.54026},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a21/}
}
TY  - JOUR
AU  - Gutev, Valentin
TI  - Weak selections and weak orderability of function spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 273
EP  - 281
VL  - 60
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a21/
LA  - en
ID  - CMJ_2010__60_1_a21
ER  - 
%0 Journal Article
%A Gutev, Valentin
%T Weak selections and weak orderability of function spaces
%J Czechoslovak Mathematical Journal
%D 2010
%P 273-281
%V 60
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a21/
%G en
%F CMJ_2010__60_1_a21
Gutev, Valentin. Weak selections and weak orderability of function spaces. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 273-281. http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a21/