Convergence conditions for Secant-type methods
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 253-272.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We provide new sufficient convergence conditions for the convergence of the secant-type methods to a locally unique solution of a nonlinear equation in a Banach space. Our new idea uses recurrent functions, and Lipschitz-type and center-Lipschitz-type instead of just Lipschitz-type conditions on the divided difference of the operator involved. It turns out that this way our error bounds are more precise than earlier ones and under our convergence hypotheses we can cover cases where earlier conditions are violated. Numerical examples are also provided.
Classification : 49M15, 65B05, 65G99, 65H10, 65N30
Keywords: secant method; Banach space; majorizing sequence; divided difference; Fréchet-derivative
@article{CMJ_2010__60_1_a20,
     author = {Argyros, Ioannis K. and Hilout, Said},
     title = {Convergence conditions for {Secant-type} methods},
     journal = {Czechoslovak Mathematical Journal},
     pages = {253--272},
     publisher = {mathdoc},
     volume = {60},
     number = {1},
     year = {2010},
     mrnumber = {2595087},
     zbl = {1224.65141},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a20/}
}
TY  - JOUR
AU  - Argyros, Ioannis K.
AU  - Hilout, Said
TI  - Convergence conditions for Secant-type methods
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 253
EP  - 272
VL  - 60
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a20/
LA  - en
ID  - CMJ_2010__60_1_a20
ER  - 
%0 Journal Article
%A Argyros, Ioannis K.
%A Hilout, Said
%T Convergence conditions for Secant-type methods
%J Czechoslovak Mathematical Journal
%D 2010
%P 253-272
%V 60
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a20/
%G en
%F CMJ_2010__60_1_a20
Argyros, Ioannis K.; Hilout, Said. Convergence conditions for Secant-type methods. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 253-272. http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a20/