Generalized Jordan derivations associated with Hochschild 2-cocycles of triangular algebras
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 211-219.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, we investigate a new type of generalized derivations associated with Hochschild 2-cocycles which is introduced by A.Nakajima (Turk.\ J.\ Math.\ 30 (2006), 403--411). We show that if $\mathcal U$ is a triangular algebra, then every generalized Jordan derivation of above type from $\mathcal U$ into itself is a generalized derivation.
Classification : 47B47, 47L35
Keywords: generalized Jordan derivation; generalized derivation; Hochschild 2-cocycle; triangular algebra
@article{CMJ_2010__60_1_a17,
     author = {Majieed, Asia and Zhou, Jiren},
     title = {Generalized {Jordan} derivations associated with {Hochschild} 2-cocycles of triangular algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {211--219},
     publisher = {mathdoc},
     volume = {60},
     number = {1},
     year = {2010},
     mrnumber = {2595084},
     zbl = {1224.16096},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a17/}
}
TY  - JOUR
AU  - Majieed, Asia
AU  - Zhou, Jiren
TI  - Generalized Jordan derivations associated with Hochschild 2-cocycles of triangular algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 211
EP  - 219
VL  - 60
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a17/
LA  - en
ID  - CMJ_2010__60_1_a17
ER  - 
%0 Journal Article
%A Majieed, Asia
%A Zhou, Jiren
%T Generalized Jordan derivations associated with Hochschild 2-cocycles of triangular algebras
%J Czechoslovak Mathematical Journal
%D 2010
%P 211-219
%V 60
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a17/
%G en
%F CMJ_2010__60_1_a17
Majieed, Asia; Zhou, Jiren. Generalized Jordan derivations associated with Hochschild 2-cocycles of triangular algebras. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 211-219. http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a17/