Schur multiplier characterization of a class of infinite matrices
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 183-193.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $B_w(\ell ^p)$ denote the space of infinite matrices $A$ for which $A(x)\in \ell ^p$ for all $x=\{x_k\}_{k=1}^\infty \in \ell ^p$ with $|x_k|\searrow 0$. We characterize the upper triangular positive matrices from $B_w(\ell ^p)$, $1$, by using a special kind of Schur multipliers and the G. Bennett factorization technique. Also some related results are stated and discussed.
Classification : 15A48, 15A60, 26D15, 47B35
Keywords: infinite matrices; Schur multipliers; discrete Sawyer duality principle; Bennett factorization; Wiener algebra and Hardy type inequalities
@article{CMJ_2010__60_1_a15,
     author = {Marcoci, A. and Marcoci, L. and Persson, L. E. and Popa, N.},
     title = {Schur multiplier characterization of a class of infinite matrices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {183--193},
     publisher = {mathdoc},
     volume = {60},
     number = {1},
     year = {2010},
     mrnumber = {2595082},
     zbl = {1224.15066},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a15/}
}
TY  - JOUR
AU  - Marcoci, A.
AU  - Marcoci, L.
AU  - Persson, L. E.
AU  - Popa, N.
TI  - Schur multiplier characterization of a class of infinite matrices
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 183
EP  - 193
VL  - 60
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a15/
LA  - en
ID  - CMJ_2010__60_1_a15
ER  - 
%0 Journal Article
%A Marcoci, A.
%A Marcoci, L.
%A Persson, L. E.
%A Popa, N.
%T Schur multiplier characterization of a class of infinite matrices
%J Czechoslovak Mathematical Journal
%D 2010
%P 183-193
%V 60
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a15/
%G en
%F CMJ_2010__60_1_a15
Marcoci, A.; Marcoci, L.; Persson, L. E.; Popa, N. Schur multiplier characterization of a class of infinite matrices. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 183-193. http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a15/