Positive solutions for third order multi-point singular boundary value problems
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 173-182.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study a third order singular boundary value problem with multi-point boundary conditions. Sufficient conditions are obtained for the existence of positive solutions of the problem. Recent results in the literature are significantly extended and improved. Our analysis is mainly based on a nonlinear alternative of Leray-Schauder.
Classification : 34B10, 34B15, 34B16, 34B18, 47N20
Keywords: positive solution; singular boundary value problem; multi-point boundary condition; nonlinear alternative of Leray-Schauder
@article{CMJ_2010__60_1_a14,
     author = {Graef, John R. and Kong, Lingju and Yang, Bo},
     title = {Positive solutions for third order multi-point singular boundary value problems},
     journal = {Czechoslovak Mathematical Journal},
     pages = {173--182},
     publisher = {mathdoc},
     volume = {60},
     number = {1},
     year = {2010},
     mrnumber = {2595081},
     zbl = {1224.34060},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a14/}
}
TY  - JOUR
AU  - Graef, John R.
AU  - Kong, Lingju
AU  - Yang, Bo
TI  - Positive solutions for third order multi-point singular boundary value problems
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 173
EP  - 182
VL  - 60
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a14/
LA  - en
ID  - CMJ_2010__60_1_a14
ER  - 
%0 Journal Article
%A Graef, John R.
%A Kong, Lingju
%A Yang, Bo
%T Positive solutions for third order multi-point singular boundary value problems
%J Czechoslovak Mathematical Journal
%D 2010
%P 173-182
%V 60
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a14/
%G en
%F CMJ_2010__60_1_a14
Graef, John R.; Kong, Lingju; Yang, Bo. Positive solutions for third order multi-point singular boundary value problems. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 173-182. http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a14/