Global structure of positive solutions for superlinear $2m$th-boundary value problems
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 161-172.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider boundary value problems for nonlinear $2m$th-order eigenvalue problem $$ \begin{aligned} (-1)^mu^{(2m)}(t)=\lambda a(t)f(u(t)),\ \ \ \ \ 01, \\ u^{(2i)}(0)=u^{(2i)}(1)=0,\ \ \ \ i=0,1,2,\cdots ,m-1 . \end{aligned} $$ where $a\in C([0,1], [0,\infty ))$ and $a(t_0)>0$ for some $t_0\in [0,1]$, $f\in C([0,\infty ),[0,\infty ))$ and $f(s)>0$ for $s>0$, and $f_0=\infty $, where $f_0=\lim _{s\rightarrow 0^+}f(s)/s$. We investigate the global structure of positive solutions by using Rabinowitz's global bifurcation theorem.
Classification : 34B08, 34B10, 34B18, 34G20, 47J15, 47N20
Keywords: multiplicity results; Lidstone boundary value problem; eigenvalues; bifurcation methods; positive solutions
@article{CMJ_2010__60_1_a13,
     author = {Ma, Ruyun and An, Yulian},
     title = {Global structure of positive solutions for superlinear $2m$th-boundary value problems},
     journal = {Czechoslovak Mathematical Journal},
     pages = {161--172},
     publisher = {mathdoc},
     volume = {60},
     number = {1},
     year = {2010},
     mrnumber = {2595080},
     zbl = {1224.34034},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a13/}
}
TY  - JOUR
AU  - Ma, Ruyun
AU  - An, Yulian
TI  - Global structure of positive solutions for superlinear $2m$th-boundary value problems
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 161
EP  - 172
VL  - 60
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a13/
LA  - en
ID  - CMJ_2010__60_1_a13
ER  - 
%0 Journal Article
%A Ma, Ruyun
%A An, Yulian
%T Global structure of positive solutions for superlinear $2m$th-boundary value problems
%J Czechoslovak Mathematical Journal
%D 2010
%P 161-172
%V 60
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a13/
%G en
%F CMJ_2010__60_1_a13
Ma, Ruyun; An, Yulian. Global structure of positive solutions for superlinear $2m$th-boundary value problems. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 161-172. http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a13/