On deformations of spherical isometric foldings
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 149-159
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The behavior of special classes of isometric foldings of the Riemannian sphere $S^2$ under the action of angular conformal deformations is considered. It is shown that within these classes any isometric folding is continuously deformable into the {\it standard} spherical isometric folding $f_s$ defined by $f_s(x,y,z)=(x,y,|z|)$.
Classification :
52B05, 52C20, 55P10, 57Q55
Keywords: isometric foldings; edge-to-edge spherical tilings; homotopy
Keywords: isometric foldings; edge-to-edge spherical tilings; homotopy
@article{CMJ_2010__60_1_a12,
author = {Breda, Ana M. and Santos, Altino F.},
title = {On deformations of spherical isometric foldings},
journal = {Czechoslovak Mathematical Journal},
pages = {149--159},
publisher = {mathdoc},
volume = {60},
number = {1},
year = {2010},
mrnumber = {2595079},
zbl = {1224.52028},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a12/}
}
Breda, Ana M.; Santos, Altino F. On deformations of spherical isometric foldings. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 149-159. http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a12/