Weak continuity properties of topologized groups
Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 133-148.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We explore (weak) continuity properties of group operations. For this purpose, the Novak number and developability number are applied. It is shown that if $(G, \cdot ,\tau )$ is a regular right (left) semitopological group with $\mathop{{\rm dev}}(G)\mathop{{\rm Nov}}(G)$ such that all left (right) translations are feebly continuous, then $(G,\cdot ,\tau )$ is a topological group. This extends several results in literature.
Classification : 22A05, 54C08, 54E52, 54H11
Keywords: developability number; feebly continuous; nearly continuous; Novak number; paratopological group; semitopological group; topological group
@article{CMJ_2010__60_1_a11,
     author = {Cao, J. and Drozdowski, R. and Piotrowski, Z.},
     title = {Weak continuity properties of topologized groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {133--148},
     publisher = {mathdoc},
     volume = {60},
     number = {1},
     year = {2010},
     mrnumber = {2595078},
     zbl = {1224.54079},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a11/}
}
TY  - JOUR
AU  - Cao, J.
AU  - Drozdowski, R.
AU  - Piotrowski, Z.
TI  - Weak continuity properties of topologized groups
JO  - Czechoslovak Mathematical Journal
PY  - 2010
SP  - 133
EP  - 148
VL  - 60
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a11/
LA  - en
ID  - CMJ_2010__60_1_a11
ER  - 
%0 Journal Article
%A Cao, J.
%A Drozdowski, R.
%A Piotrowski, Z.
%T Weak continuity properties of topologized groups
%J Czechoslovak Mathematical Journal
%D 2010
%P 133-148
%V 60
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a11/
%G en
%F CMJ_2010__60_1_a11
Cao, J.; Drozdowski, R.; Piotrowski, Z. Weak continuity properties of topologized groups. Czechoslovak Mathematical Journal, Tome 60 (2010) no. 1, pp. 133-148. http://geodesic.mathdoc.fr/item/CMJ_2010__60_1_a11/