Set vertex colorings and joins of graphs
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 4, pp. 929-941.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For a nontrivial connected graph $G$, let $c\: V(G)\to \Bbb N$ be a vertex coloring of $G$ where adjacent vertices may be colored the same. For a vertex $v$ of $G$, the neighborhood color set ${\rm NC}(v)$ is the set of colors of the neighbors of $v$. The coloring $c$ is called a set coloring if ${\rm NC}(u)\ne {\rm NC}(v)$ for every pair $u,v$ of adjacent vertices of $G$. The minimum number of colors required of such a coloring is called the set chromatic number $\chi _s(G)$. A study is made of the set chromatic number of the join $G + H$ of two graphs $G$ and $H$. Sharp lower and upper bounds are established for $\chi _s(G+H)$ in terms of $\chi _s(G)$, $\chi _s(H)$, and the clique numbers $\omega (G)$ and $\omega (H)$.
Classification : 05C15
Keywords: neighbor-distinguishing coloring; set coloring; neighborhood color set
@article{CMJ_2009__59_4_a4,
     author = {Okamoto, Futaba and Rasmussen, Craig W. and Zhang, Ping},
     title = {Set vertex colorings and joins of graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {929--941},
     publisher = {mathdoc},
     volume = {59},
     number = {4},
     year = {2009},
     mrnumber = {2563567},
     zbl = {1224.05184},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009__59_4_a4/}
}
TY  - JOUR
AU  - Okamoto, Futaba
AU  - Rasmussen, Craig W.
AU  - Zhang, Ping
TI  - Set vertex colorings and joins of graphs
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 929
EP  - 941
VL  - 59
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009__59_4_a4/
LA  - en
ID  - CMJ_2009__59_4_a4
ER  - 
%0 Journal Article
%A Okamoto, Futaba
%A Rasmussen, Craig W.
%A Zhang, Ping
%T Set vertex colorings and joins of graphs
%J Czechoslovak Mathematical Journal
%D 2009
%P 929-941
%V 59
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2009__59_4_a4/
%G en
%F CMJ_2009__59_4_a4
Okamoto, Futaba; Rasmussen, Craig W.; Zhang, Ping. Set vertex colorings and joins of graphs. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 4, pp. 929-941. http://geodesic.mathdoc.fr/item/CMJ_2009__59_4_a4/