Matlis reflexive and generalized local cohomology modules
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 4, pp. 1095-1102.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $(R,\mathfrak m )$ be a complete local ring, $\mathfrak a $ an ideal of $R$ and $N$ and $L$ two Matlis reflexive $R$-modules with $\mathop{{\rm Supp}} (L)\subseteq V(\mathfrak a )$. We prove that if $M$ is a finitely generated $R$-module, then $\mathop{{\rm Ext}}\nolimits_R^i(L,H_{\mathfrak a }^j(M,N))$ is Matlis reflexive for all $i$ and $j$ in the following cases: (a) $\mathop{{\rm dim}} R/{\mathfrak a }=1$; (b) $\mathop{{\rm cd}} (\mathfrak a )=1$; where $\mathop{{\rm cd}} $ is the cohomological dimension of $\mathfrak a $ in $R$; (c) $\mathop{{\rm dim}} R\leq 2$. In these cases we also prove that the Bass numbers of $H_{\mathfrak a }^j(M,N)$ are finite.
Classification : 13D07, 13D45, 13E99
Keywords: Bass numbers; generalized local cohomology modules; Matlis reflexive
@article{CMJ_2009__59_4_a17,
     author = {Mafi, Amir},
     title = {Matlis reflexive and generalized local cohomology modules},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1095--1102},
     publisher = {mathdoc},
     volume = {59},
     number = {4},
     year = {2009},
     mrnumber = {2563580},
     zbl = {1224.13016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009__59_4_a17/}
}
TY  - JOUR
AU  - Mafi, Amir
TI  - Matlis reflexive and generalized local cohomology modules
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 1095
EP  - 1102
VL  - 59
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009__59_4_a17/
LA  - en
ID  - CMJ_2009__59_4_a17
ER  - 
%0 Journal Article
%A Mafi, Amir
%T Matlis reflexive and generalized local cohomology modules
%J Czechoslovak Mathematical Journal
%D 2009
%P 1095-1102
%V 59
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2009__59_4_a17/
%G en
%F CMJ_2009__59_4_a17
Mafi, Amir. Matlis reflexive and generalized local cohomology modules. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 4, pp. 1095-1102. http://geodesic.mathdoc.fr/item/CMJ_2009__59_4_a17/