Potentially $K_m-G$-graphical sequences: A survey
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 4, pp. 1059-1075.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The set of all non-increasing nonnegative integer sequences $\pi =$ ($d(v_1 ),d(v_2 ), \dots , d(v_n )$) is denoted by ${\rm NS}_n$. A sequence $\pi \in {\rm NS}_n$ is said to be graphic if it is the degree sequence of a simple graph $G$ on $n$ vertices, and such a graph $G$ is called a realization of $\pi $. The set of all graphic sequences in ${\rm NS}_n$ is denoted by ${\rm GS}_n$. A graphical sequence $\pi $ is potentially $H$-graphical if there is a realization of $\pi $ containing $H$ as a subgraph, while $\pi $ is forcibly $H$-graphical if every realization of $\pi $ contains $H$ as a subgraph. Let $K_k$ denote a complete graph on $k$ vertices. Let $K_m-H$ be the graph obtained from $K_m$ by removing the edges set $E(H)$ of the graph $H$ ($H$ is a subgraph of $K_m$). This paper summarizes briefly some recent results on potentially $K_m-G$-graphic sequences and give a useful classification for determining $\sigma (H,n)$.
Classification : 05C07, 05C35
Keywords: graph; degree sequence; potentially $K_m-G$-graphic sequences
@article{CMJ_2009__59_4_a14,
     author = {Lai, Chunhui and Hu, Lili},
     title = {Potentially $K_m-G$-graphical sequences: {A} survey},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1059--1075},
     publisher = {mathdoc},
     volume = {59},
     number = {4},
     year = {2009},
     mrnumber = {2563577},
     zbl = {1224.05105},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009__59_4_a14/}
}
TY  - JOUR
AU  - Lai, Chunhui
AU  - Hu, Lili
TI  - Potentially $K_m-G$-graphical sequences: A survey
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 1059
EP  - 1075
VL  - 59
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009__59_4_a14/
LA  - en
ID  - CMJ_2009__59_4_a14
ER  - 
%0 Journal Article
%A Lai, Chunhui
%A Hu, Lili
%T Potentially $K_m-G$-graphical sequences: A survey
%J Czechoslovak Mathematical Journal
%D 2009
%P 1059-1075
%V 59
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2009__59_4_a14/
%G en
%F CMJ_2009__59_4_a14
Lai, Chunhui; Hu, Lili. Potentially $K_m-G$-graphical sequences: A survey. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 4, pp. 1059-1075. http://geodesic.mathdoc.fr/item/CMJ_2009__59_4_a14/