Further properties of Azimi-Hagler Banach spaces
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 4, pp. 871-878.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For the Azimi-Hagler spaces more geometric and topological properties are investigated. Any constructed space is denoted by $X_{\alpha ,p}$. We show \item {(i)} The subspace $[(e_{n_k})]$ generated by a subsequence $(e_{n_k})$ of $(e_n)$ is complemented. \item {(ii)} The identity operator from $X_{\alpha ,p}$ to $X_{\alpha ,q}$ when $p>q$ is unbounded. \item {(iii)} Every bounded linear operator on some subspace of $X_{\alpha ,p}$ is compact. It is known that if any $X_{\alpha ,p}$ is a dual space, then \item {(iv)} duals of $X_{\alpha ,1}$ spaces contain isometric copies of $\ell _{\infty }$ and their preduals contain asymptotically isometric copies of $c_0$. \item {(v)} We investigate the properties of the operators from $X_{\alpha ,p}$ spaces to their predual.
Classification : 46B20, 46B25, 47L25, 56B45
Keywords: Banach spaces; compact operator; asymptotic isometric copy of $\ell _1$
@article{CMJ_2009__59_4_a1,
     author = {Azimi, Parviz and Khodabakhshian, H.},
     title = {Further properties of {Azimi-Hagler} {Banach} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {871--878},
     publisher = {mathdoc},
     volume = {59},
     number = {4},
     year = {2009},
     mrnumber = {2563564},
     zbl = {1218.47134},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009__59_4_a1/}
}
TY  - JOUR
AU  - Azimi, Parviz
AU  - Khodabakhshian, H.
TI  - Further properties of Azimi-Hagler Banach spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 871
EP  - 878
VL  - 59
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009__59_4_a1/
LA  - en
ID  - CMJ_2009__59_4_a1
ER  - 
%0 Journal Article
%A Azimi, Parviz
%A Khodabakhshian, H.
%T Further properties of Azimi-Hagler Banach spaces
%J Czechoslovak Mathematical Journal
%D 2009
%P 871-878
%V 59
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2009__59_4_a1/
%G en
%F CMJ_2009__59_4_a1
Azimi, Parviz; Khodabakhshian, H. Further properties of Azimi-Hagler Banach spaces. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 4, pp. 871-878. http://geodesic.mathdoc.fr/item/CMJ_2009__59_4_a1/