Minus total domination in graphs
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 4, pp. 861-870.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A three-valued function $f\: V\rightarrow \{-1,0,1\}$ defined on the vertices of a graph $G=(V,E)$ is a minus total dominating function (MTDF) if the sum of its function values over any open neighborhood is at least one. That is, for every $v\in V$, $f(N(v))\ge 1$, where $N(v)$ consists of every vertex adjacent to $v$. The weight of an MTDF is $f(V)=\sum f(v)$, over all vertices $v\in V$. The minus total domination number of a graph $G$, denoted $\gamma _t^{-}(G)$, equals the minimum weight of an MTDF of $G$. In this paper, we discuss some properties of minus total domination on a graph $G$ and obtain a few lower bounds for $\gamma _t^{-}(G)$.
Classification : 05C69
Keywords: minus domination; total domination; minus total domination
@article{CMJ_2009__59_4_a0,
     author = {Xing, Hua-Ming and Liu, Hai-Long},
     title = {Minus total domination in graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {861--870},
     publisher = {mathdoc},
     volume = {59},
     number = {4},
     year = {2009},
     mrnumber = {2563563},
     zbl = {1224.05387},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009__59_4_a0/}
}
TY  - JOUR
AU  - Xing, Hua-Ming
AU  - Liu, Hai-Long
TI  - Minus total domination in graphs
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 861
EP  - 870
VL  - 59
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009__59_4_a0/
LA  - en
ID  - CMJ_2009__59_4_a0
ER  - 
%0 Journal Article
%A Xing, Hua-Ming
%A Liu, Hai-Long
%T Minus total domination in graphs
%J Czechoslovak Mathematical Journal
%D 2009
%P 861-870
%V 59
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2009__59_4_a0/
%G en
%F CMJ_2009__59_4_a0
Xing, Hua-Ming; Liu, Hai-Long. Minus total domination in graphs. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 4, pp. 861-870. http://geodesic.mathdoc.fr/item/CMJ_2009__59_4_a0/