Evaluation of the sums $\sum\limits_{\substack{m=1 \\ m\equiv a\pmod 4}}^{n-1} \sigma (m) \sigma (n-m) $
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 3, pp. 847-859.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The convolution sum $$ \sum\limits_{\substack{m=1 \\ m\equiv a\pmod 4}}^{n-1} \sigma (m) \sigma (n-m) $$ is evaluated for $a\in \{ 0,1,2,3\}$ and all $n \in \Bbb N$. This completes the partial evaluation given in the paper of J. G. Huard, Z. M. Ou, B. K. Spearman, K. S. Williams.
Classification : 11A25, 11F27
Keywords: convolution sums; sum of divisors function; theta functions
@article{CMJ_2009__59_3_a20,
     author = {Alaca, Ay\c{s}e and Alaca, \c{S}aban and Williams, Kenneth S.},
     title = {Evaluation of the sums $\sum\limits_{\substack{m=1 \\ m\equiv a\pmod 4}}^{n-1} \sigma (m) \sigma (n-m) $},
     journal = {Czechoslovak Mathematical Journal},
     pages = {847--859},
     publisher = {mathdoc},
     volume = {59},
     number = {3},
     year = {2009},
     mrnumber = {2545660},
     zbl = {1204.11009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009__59_3_a20/}
}
TY  - JOUR
AU  - Alaca, Ayşe
AU  - Alaca, Şaban
AU  - Williams, Kenneth S.
TI  - Evaluation of the sums $\sum\limits_{\substack{m=1 \\ m\equiv a\pmod 4}}^{n-1} \sigma (m) \sigma (n-m) $
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 847
EP  - 859
VL  - 59
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009__59_3_a20/
LA  - en
ID  - CMJ_2009__59_3_a20
ER  - 
%0 Journal Article
%A Alaca, Ayşe
%A Alaca, Şaban
%A Williams, Kenneth S.
%T Evaluation of the sums $\sum\limits_{\substack{m=1 \\ m\equiv a\pmod 4}}^{n-1} \sigma (m) \sigma (n-m) $
%J Czechoslovak Mathematical Journal
%D 2009
%P 847-859
%V 59
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2009__59_3_a20/
%G en
%F CMJ_2009__59_3_a20
Alaca, Ayşe; Alaca, Şaban; Williams, Kenneth S. Evaluation of the sums $\sum\limits_{\substack{m=1 \\ m\equiv a\pmod 4}}^{n-1} \sigma (m) \sigma (n-m) $. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 3, pp. 847-859. http://geodesic.mathdoc.fr/item/CMJ_2009__59_3_a20/