On the $2k$-th power mean of $\frac {L'}L(1,\chi )$ with the weight of Gauss sums
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 3, pp. 781-789
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The main purpose of this paper is to study the hybrid mean value of $\frac {L'}L(1,\chi )$ and Gauss sums by using the estimates for trigonometric sums as well as the analytic method. An asymptotic formula for the hybrid mean value $\sum _{\chi \neq \chi _0} |\tau (\chi )| |\frac {L'}L(1,\chi )|^{2k}$ of $\frac {L'}L$ and Gauss sums will be proved using analytic methods and estimates for trigonometric sums.
@article{CMJ_2009__59_3_a16,
author = {Ren, Dongmei and Yi, Yuan},
title = {On the $2k$-th power mean of $\frac {L'}L(1,\chi )$ with the weight of {Gauss} sums},
journal = {Czechoslovak Mathematical Journal},
pages = {781--789},
publisher = {mathdoc},
volume = {59},
number = {3},
year = {2009},
mrnumber = {2545656},
zbl = {1204.11140},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2009__59_3_a16/}
}
TY - JOUR
AU - Ren, Dongmei
AU - Yi, Yuan
TI - On the $2k$-th power mean of $\frac {L'}L(1,\chi )$ with the weight of Gauss sums
JO - Czechoslovak Mathematical Journal
PY - 2009
SP - 781
EP - 789
VL - 59
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/CMJ_2009__59_3_a16/
LA - en
ID - CMJ_2009__59_3_a16
ER -
Ren, Dongmei; Yi, Yuan. On the $2k$-th power mean of $\frac {L'}L(1,\chi )$ with the weight of Gauss sums. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 3, pp. 781-789. http://geodesic.mathdoc.fr/item/CMJ_2009__59_3_a16/