Convex-compact sets and Banach discs
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 3, pp. 773-780.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Every relatively convex-compact convex subset of a locally convex space is contained in a Banach disc. Moreover, an upper bound for the class of sets which are contained in a Banach disc is presented. If the topological dual $E'$ of a locally convex space $E$ is the $\sigma (E',E)$-closure of the union of countably many $\sigma (E',E)$-relatively countably compacts sets, then every weakly (relatively) convex-compact set is weakly (relatively) compact.
Classification : 46A03, 46A50
Keywords: weakly compact sets; convex-compact sets; Banach discs
@article{CMJ_2009__59_3_a15,
     author = {Monterde, I. and Montesinos, V.},
     title = {Convex-compact sets and {Banach} discs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {773--780},
     publisher = {mathdoc},
     volume = {59},
     number = {3},
     year = {2009},
     mrnumber = {2545655},
     zbl = {1224.13023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009__59_3_a15/}
}
TY  - JOUR
AU  - Monterde, I.
AU  - Montesinos, V.
TI  - Convex-compact sets and Banach discs
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 773
EP  - 780
VL  - 59
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009__59_3_a15/
LA  - en
ID  - CMJ_2009__59_3_a15
ER  - 
%0 Journal Article
%A Monterde, I.
%A Montesinos, V.
%T Convex-compact sets and Banach discs
%J Czechoslovak Mathematical Journal
%D 2009
%P 773-780
%V 59
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2009__59_3_a15/
%G en
%F CMJ_2009__59_3_a15
Monterde, I.; Montesinos, V. Convex-compact sets and Banach discs. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 3, pp. 773-780. http://geodesic.mathdoc.fr/item/CMJ_2009__59_3_a15/