Some concepts of regularity for parametric multiple-integral problems in the calculus of variations
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 3, pp. 741-758
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We show that asserting the regularity (in the sense of Rund) of a first-order parametric multiple-integral variational problem is equivalent to asserting that the differential of the projection of its Hilbert-Carathéodory form is multisymplectic, and is also equivalent to asserting that Dedecker extremals of the latter $(m+1)$-form are holonomic.
Classification :
37Jxx, 49K10, 49N60, 53Cxx, 58E15, 70Gxx
Keywords: parametric variational problem; regularity; multisymplectic
Keywords: parametric variational problem; regularity; multisymplectic
@article{CMJ_2009__59_3_a13,
author = {Crampin, M. and Saunders, D. J.},
title = {Some concepts of regularity for parametric multiple-integral problems in the calculus of variations},
journal = {Czechoslovak Mathematical Journal},
pages = {741--758},
publisher = {mathdoc},
volume = {59},
number = {3},
year = {2009},
mrnumber = {2545653},
zbl = {1224.58012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2009__59_3_a13/}
}
TY - JOUR AU - Crampin, M. AU - Saunders, D. J. TI - Some concepts of regularity for parametric multiple-integral problems in the calculus of variations JO - Czechoslovak Mathematical Journal PY - 2009 SP - 741 EP - 758 VL - 59 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMJ_2009__59_3_a13/ LA - en ID - CMJ_2009__59_3_a13 ER -
%0 Journal Article %A Crampin, M. %A Saunders, D. J. %T Some concepts of regularity for parametric multiple-integral problems in the calculus of variations %J Czechoslovak Mathematical Journal %D 2009 %P 741-758 %V 59 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMJ_2009__59_3_a13/ %G en %F CMJ_2009__59_3_a13
Crampin, M.; Saunders, D. J. Some concepts of regularity for parametric multiple-integral problems in the calculus of variations. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 3, pp. 741-758. http://geodesic.mathdoc.fr/item/CMJ_2009__59_3_a13/