An extension theorem for modular measures on effect algebras
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 3, pp. 707-719
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We prove an extension theorem for modular measures on lattice ordered effect algebras. This is used to obtain a representation of these measures by the classical ones. With the aid of this theorem we transfer control theorems, Vitali-Hahn-Saks, Nikodým theorems and range theorems to this setting.
Classification :
06C15, 28E99
Keywords: effect algebras; modular measures; extension; Vitali-Hahn-Saks theorem; Nikodým theorem; decomposition theorem; control theorems; range; Liapunoff theorem
Keywords: effect algebras; modular measures; extension; Vitali-Hahn-Saks theorem; Nikodým theorem; decomposition theorem; control theorems; range; Liapunoff theorem
@article{CMJ_2009__59_3_a11,
author = {Barbieri, Giuseppina},
title = {An extension theorem for modular measures on effect algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {707--719},
publisher = {mathdoc},
volume = {59},
number = {3},
year = {2009},
mrnumber = {2545651},
zbl = {1224.28037},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2009__59_3_a11/}
}
Barbieri, Giuseppina. An extension theorem for modular measures on effect algebras. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 3, pp. 707-719. http://geodesic.mathdoc.fr/item/CMJ_2009__59_3_a11/