On the Schröder-Bernstein problem for Carathéodory vector lattices
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 2, pp. 419-430
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this note we prove that there exists a Carathéodory vector lattice $V$ such that $V\cong V^3$ and $V\ncong V^2$. This yields that $V$ is a solution of the Schröder-Bernstein problem for Carathéodory vector lattices. We also show that no Carathéodory Banach lattice is a solution of the Schröder-Bernstein problem.
Classification :
06F15, 06F20, 46A40
Keywords: vecrot lattice; Boolean algebra; internal direct factor
Keywords: vecrot lattice; Boolean algebra; internal direct factor
@article{CMJ_2009__59_2_a9,
author = {Jakub{\'\i}k, J\'an},
title = {On the {Schr\"oder-Bernstein} problem for {Carath\'eodory} vector lattices},
journal = {Czechoslovak Mathematical Journal},
pages = {419--430},
publisher = {mathdoc},
volume = {59},
number = {2},
year = {2009},
mrnumber = {2532383},
zbl = {1224.46006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2009__59_2_a9/}
}
Jakubík, Ján. On the Schröder-Bernstein problem for Carathéodory vector lattices. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 2, pp. 419-430. http://geodesic.mathdoc.fr/item/CMJ_2009__59_2_a9/