On the Schröder-Bernstein problem for Carathéodory vector lattices
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 2, pp. 419-430.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this note we prove that there exists a Carathéodory vector lattice $V$ such that $V\cong V^3$ and $V\ncong V^2$. This yields that $V$ is a solution of the Schröder-Bernstein problem for Carathéodory vector lattices. We also show that no Carathéodory Banach lattice is a solution of the Schröder-Bernstein problem.
Classification : 06F15, 06F20, 46A40
Keywords: vecrot lattice; Boolean algebra; internal direct factor
@article{CMJ_2009__59_2_a9,
     author = {Jakub{\'\i}k, J\'an},
     title = {On the {Schr\"oder-Bernstein} problem for {Carath\'eodory} vector lattices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {419--430},
     publisher = {mathdoc},
     volume = {59},
     number = {2},
     year = {2009},
     mrnumber = {2532383},
     zbl = {1224.46006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009__59_2_a9/}
}
TY  - JOUR
AU  - Jakubík, Ján
TI  - On the Schröder-Bernstein problem for Carathéodory vector lattices
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 419
EP  - 430
VL  - 59
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009__59_2_a9/
LA  - en
ID  - CMJ_2009__59_2_a9
ER  - 
%0 Journal Article
%A Jakubík, Ján
%T On the Schröder-Bernstein problem for Carathéodory vector lattices
%J Czechoslovak Mathematical Journal
%D 2009
%P 419-430
%V 59
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2009__59_2_a9/
%G en
%F CMJ_2009__59_2_a9
Jakubík, Ján. On the Schröder-Bernstein problem for Carathéodory vector lattices. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 2, pp. 419-430. http://geodesic.mathdoc.fr/item/CMJ_2009__59_2_a9/