Boundary functions on a bounded balanced domain
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 2, pp. 371-379.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We solve the following Dirichlet problem on the bounded balanced domain $\Omega $ with some additional properties: For $p>0$ and a positive lower semi-continuous function $u$ on $\partial \Omega $ with $u(z)=u(\lambda z)$ for $|\lambda |=1$, $z\in \partial \Omega $ we construct a holomorphic function $f\in \Bbb O(\Omega )$ such that $u(z)=\int _{\Bbb Dz}|f|^pd \frak L_{\Bbb Dz}^2$ for $z\in \partial \Omega $, where $\Bbb D=\{\lambda \in \Bbb C\:|\lambda |1\}$.
Classification : 30B30, 30D60
Keywords: boundary behavior of holomorphic functions; exceptional sets; boundary functions; Dirichlet problem; Radon inversion problem
@article{CMJ_2009__59_2_a6,
     author = {Kot, Piotr},
     title = {Boundary functions on a bounded balanced domain},
     journal = {Czechoslovak Mathematical Journal},
     pages = {371--379},
     publisher = {mathdoc},
     volume = {59},
     number = {2},
     year = {2009},
     mrnumber = {2532382},
     zbl = {1224.30005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009__59_2_a6/}
}
TY  - JOUR
AU  - Kot, Piotr
TI  - Boundary functions on a bounded balanced domain
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 371
EP  - 379
VL  - 59
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009__59_2_a6/
LA  - en
ID  - CMJ_2009__59_2_a6
ER  - 
%0 Journal Article
%A Kot, Piotr
%T Boundary functions on a bounded balanced domain
%J Czechoslovak Mathematical Journal
%D 2009
%P 371-379
%V 59
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2009__59_2_a6/
%G en
%F CMJ_2009__59_2_a6
Kot, Piotr. Boundary functions on a bounded balanced domain. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 2, pp. 371-379. http://geodesic.mathdoc.fr/item/CMJ_2009__59_2_a6/