Orbit projections as fibrations
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 2, pp. 529-538.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The orbit projection $\pi \: M \to M/G$ of a proper $G$-manifold $M$ is a fibration if and only if all points in $M$ are regular. Under additional assumptions we show that $\pi $ is a quasifibration if and only if all points are regular. We get a full answer in the equivariant category: $\pi $ is a $G$-quasifibration if and only if all points are regular.
Classification : 55R05, 55R65, 57S15
Keywords: orbit projection; proper $G$-manifold; fibration; quasifibration
@article{CMJ_2009__59_2_a15,
     author = {Rainer, Armin},
     title = {Orbit projections as fibrations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {529--538},
     publisher = {mathdoc},
     volume = {59},
     number = {2},
     year = {2009},
     mrnumber = {2532388},
     zbl = {1224.55003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009__59_2_a15/}
}
TY  - JOUR
AU  - Rainer, Armin
TI  - Orbit projections as fibrations
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 529
EP  - 538
VL  - 59
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009__59_2_a15/
LA  - en
ID  - CMJ_2009__59_2_a15
ER  - 
%0 Journal Article
%A Rainer, Armin
%T Orbit projections as fibrations
%J Czechoslovak Mathematical Journal
%D 2009
%P 529-538
%V 59
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2009__59_2_a15/
%G en
%F CMJ_2009__59_2_a15
Rainer, Armin. Orbit projections as fibrations. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 2, pp. 529-538. http://geodesic.mathdoc.fr/item/CMJ_2009__59_2_a15/