Clean matrices over commutative rings
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 1, pp. 145-158.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A matrix $A\in M_n(R)$ is $e$-clean provided there exists an idempotent $E\in M_n(R)$ such that $A-E\in \mathop{\rm GL}_n(R)$ and $\det E=e$. We get a general criterion of $e$-cleanness for the matrix $[[a_1,a_2,\cdots ,a_{n+1}]]$. Under the $n$-stable range condition, it is shown that $[[a_1,a_2,\cdots ,a_{n+1}]]$ is $0$-clean iff $(a_1,a_2,\cdots ,a_{n+1})=1$. As an application, we prove that the $0$-cleanness and unit-regularity for such $n\times n$ matrix over a Dedekind domain coincide for all $n\geq 3$. The analogous for $(s,2)$ property is also obtained.
Classification : 15A23, 16E50
Keywords: matrix; clean element; unit-regularity
@article{CMJ_2009__59_1_a9,
     author = {Chen, Huanyin},
     title = {Clean matrices over commutative rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {145--158},
     publisher = {mathdoc},
     volume = {59},
     number = {1},
     year = {2009},
     mrnumber = {2486621},
     zbl = {1224.15034},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009__59_1_a9/}
}
TY  - JOUR
AU  - Chen, Huanyin
TI  - Clean matrices over commutative rings
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 145
EP  - 158
VL  - 59
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009__59_1_a9/
LA  - en
ID  - CMJ_2009__59_1_a9
ER  - 
%0 Journal Article
%A Chen, Huanyin
%T Clean matrices over commutative rings
%J Czechoslovak Mathematical Journal
%D 2009
%P 145-158
%V 59
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2009__59_1_a9/
%G en
%F CMJ_2009__59_1_a9
Chen, Huanyin. Clean matrices over commutative rings. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 1, pp. 145-158. http://geodesic.mathdoc.fr/item/CMJ_2009__59_1_a9/