Going down in (semi)lattices of finite Moore families and convex geometries
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 1, pp. 249-271.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we first study what changes occur in the posets of irreducible elements when one goes from an arbitrary Moore family (respectively, a convex geometry) to one of its lower covers in the lattice of all Moore families (respectively, in the semilattice of all convex geometries) defined on a finite set. Then we study the set of all convex geometries which have the same poset of join-irreducible elements. We show that this set---ordered by set inclusion---is a ranked join-semilattice and we characterize its cover relation. We prove that the lattice of all ideals of a given poset $P$ is the only convex geometry having a poset of join-irreducible elements isomorphic to $P$ if and only if the width of $P$ is less than 3. Finally, we give an algorithm for computing all convex geometries having the same poset of join-irreducible elements.
Classification : 06A12
Keywords: closure system; Moore family; convex geometry; (semi)lattice; algorithm
@article{CMJ_2009__59_1_a17,
     author = {Gabriela, Bordalo and Nathalie, Caspard and Bernard, Monjardet},
     title = {Going down in (semi)lattices of finite {Moore} families and convex geometries},
     journal = {Czechoslovak Mathematical Journal},
     pages = {249--271},
     publisher = {mathdoc},
     volume = {59},
     number = {1},
     year = {2009},
     mrnumber = {2486629},
     zbl = {1224.06005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009__59_1_a17/}
}
TY  - JOUR
AU  - Gabriela, Bordalo
AU  - Nathalie, Caspard
AU  - Bernard, Monjardet
TI  - Going down in (semi)lattices of finite Moore families and convex geometries
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 249
EP  - 271
VL  - 59
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009__59_1_a17/
LA  - en
ID  - CMJ_2009__59_1_a17
ER  - 
%0 Journal Article
%A Gabriela, Bordalo
%A Nathalie, Caspard
%A Bernard, Monjardet
%T Going down in (semi)lattices of finite Moore families and convex geometries
%J Czechoslovak Mathematical Journal
%D 2009
%P 249-271
%V 59
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2009__59_1_a17/
%G en
%F CMJ_2009__59_1_a17
Gabriela, Bordalo; Nathalie, Caspard; Bernard, Monjardet. Going down in (semi)lattices of finite Moore families and convex geometries. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 1, pp. 249-271. http://geodesic.mathdoc.fr/item/CMJ_2009__59_1_a17/