A Generalization of Baer's Lemma
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 1, pp. 241-247.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

There is a classical result known as Baer's Lemma that states that an $R$-module $E$ is injective if it is injective for $R$. This means that if a map from a submodule of $R$, that is, from a left ideal $L$ of $R$ to $E$ can always be extended to $R$, then a map to $E$ from a submodule $A$ of any $R$-module $B$ can be extended to $B$; in other words, $E$ is injective. In this paper, we generalize this result to the category $q_{\omega }$ consisting of the representations of an infinite line quiver. This generalization of Baer's Lemma is useful in proving that torsion free covers exist for $q_{\omega }$.
Classification : 13D30, 16G20, 18G05
Keywords: Baer's Lemma; injective; representations of quivers; torsion free covers
@article{CMJ_2009__59_1_a16,
     author = {Dunkum, Molly},
     title = {A {Generalization} of {Baer's} {Lemma}},
     journal = {Czechoslovak Mathematical Journal},
     pages = {241--247},
     publisher = {mathdoc},
     volume = {59},
     number = {1},
     year = {2009},
     mrnumber = {2486628},
     zbl = {1224.13015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009__59_1_a16/}
}
TY  - JOUR
AU  - Dunkum, Molly
TI  - A Generalization of Baer's Lemma
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 241
EP  - 247
VL  - 59
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009__59_1_a16/
LA  - en
ID  - CMJ_2009__59_1_a16
ER  - 
%0 Journal Article
%A Dunkum, Molly
%T A Generalization of Baer's Lemma
%J Czechoslovak Mathematical Journal
%D 2009
%P 241-247
%V 59
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2009__59_1_a16/
%G en
%F CMJ_2009__59_1_a16
Dunkum, Molly. A Generalization of Baer's Lemma. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 1, pp. 241-247. http://geodesic.mathdoc.fr/item/CMJ_2009__59_1_a16/