On the structure of a Morse form foliation
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 1, pp. 207-220.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The foliation of a Morse form $\omega$ on a closed manifold $M$ is considered. Its maximal components (cylinders formed by compact leaves) form the foliation graph; the cycle rank of this graph is calculated. The number of minimal and maximal components is estimated in terms of characteristics of $M$ and $\omega$. Conditions for the presence of minimal components and homologically non-trivial compact leaves are given in terms of $\mathop{\rm rk}\omega $ and ${\rm Sing} \omega $. The set of the ranks of all forms defining a given foliation without minimal components is described. It is shown that if $\omega$ has more centers than conic singularities then $b_1(M)=0$ and thus the foliation has no minimal components and homologically non-trivial compact leaves, its folitation graph being a tree.
Classification : 57R30, 58K65
Keywords: number of minimal components; number of maximal components; compact leaves; foliation graph; rank of a form
@article{CMJ_2009__59_1_a14,
     author = {Gelbukh, I.},
     title = {On the structure of a {Morse} form foliation},
     journal = {Czechoslovak Mathematical Journal},
     pages = {207--220},
     publisher = {mathdoc},
     volume = {59},
     number = {1},
     year = {2009},
     mrnumber = {2486626},
     zbl = {1224.57010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009__59_1_a14/}
}
TY  - JOUR
AU  - Gelbukh, I.
TI  - On the structure of a Morse form foliation
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 207
EP  - 220
VL  - 59
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009__59_1_a14/
LA  - en
ID  - CMJ_2009__59_1_a14
ER  - 
%0 Journal Article
%A Gelbukh, I.
%T On the structure of a Morse form foliation
%J Czechoslovak Mathematical Journal
%D 2009
%P 207-220
%V 59
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2009__59_1_a14/
%G en
%F CMJ_2009__59_1_a14
Gelbukh, I. On the structure of a Morse form foliation. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 1, pp. 207-220. http://geodesic.mathdoc.fr/item/CMJ_2009__59_1_a14/