On super vertex-graceful unicyclic graphs
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 1, pp. 1-22.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A graph $G$ with $p$ vertices and $q$ edges, vertex set $V(G)$ and edge set $E(G)$, is said to be super vertex-graceful (in short SVG), if there exists a function pair $(f, f^+)$ where $f$ is a bijection from $V(G)$ onto $P$, $f^+$ is a bijection from $E(G)$ onto $Q$, $f^+((u, v)) = f(u) + f(v)$ for any $(u, v) \in E(G)$, $$ Q = \begin{cases} \{\pm 1,\dots , \pm \frac 12q\},\text {if $q$ is even,}\\ \{0, \pm 1, \dots , \pm \frac 12(q-1)\},\text {if $q$ is odd,} \end{cases} $$ and $$ P = \begin{cases} \{\pm 1,\dots , \pm \frac 12p\},\text {if $p$ is even,}\\ \{0, \pm 1, \dots , \pm \frac 12(p-1)\},\text {if $p$ is odd.} \end{cases} $$ \endgraf We determine here families of unicyclic graphs that are super vertex-graceful.
Classification : 05C78
Keywords: graceful; edge-graceful; super edge-graceful; super vertex-graceful; amalgamation; trees; unicyclic graphs
@article{CMJ_2009__59_1_a0,
     author = {Lee, Sin-Min and Leung, Elo and Ng, Ho Kuen},
     title = {On super vertex-graceful unicyclic graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1--22},
     publisher = {mathdoc},
     volume = {59},
     number = {1},
     year = {2009},
     mrnumber = {2486612},
     zbl = {1224.05447},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2009__59_1_a0/}
}
TY  - JOUR
AU  - Lee, Sin-Min
AU  - Leung, Elo
AU  - Ng, Ho Kuen
TI  - On super vertex-graceful unicyclic graphs
JO  - Czechoslovak Mathematical Journal
PY  - 2009
SP  - 1
EP  - 22
VL  - 59
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2009__59_1_a0/
LA  - en
ID  - CMJ_2009__59_1_a0
ER  - 
%0 Journal Article
%A Lee, Sin-Min
%A Leung, Elo
%A Ng, Ho Kuen
%T On super vertex-graceful unicyclic graphs
%J Czechoslovak Mathematical Journal
%D 2009
%P 1-22
%V 59
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2009__59_1_a0/
%G en
%F CMJ_2009__59_1_a0
Lee, Sin-Min; Leung, Elo; Ng, Ho Kuen. On super vertex-graceful unicyclic graphs. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 1, pp. 1-22. http://geodesic.mathdoc.fr/item/CMJ_2009__59_1_a0/