On super vertex-graceful unicyclic graphs
Czechoslovak Mathematical Journal, Tome 59 (2009) no. 1, pp. 1-22
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A graph $G$ with $p$ vertices and $q$ edges, vertex set $V(G)$ and edge set $E(G)$, is said to be super vertex-graceful (in short SVG), if there exists a function pair $(f, f^+)$ where $f$ is a bijection from $V(G)$ onto $P$, $f^+$ is a bijection from $E(G)$ onto $Q$, $f^+((u, v)) = f(u) + f(v)$ for any $(u, v) \in E(G)$, $$ Q = \begin{cases} \{\pm 1,\dots , \pm \frac 12q\},\text {if $q$ is even,}\\ \{0, \pm 1, \dots , \pm \frac 12(q-1)\},\text {if $q$ is odd,} \end{cases} $$ and $$ P = \begin{cases} \{\pm 1,\dots , \pm \frac 12p\},\text {if $p$ is even,}\\ \{0, \pm 1, \dots , \pm \frac 12(p-1)\},\text {if $p$ is odd.} \end{cases} $$ \endgraf We determine here families of unicyclic graphs that are super vertex-graceful.
Classification :
05C78
Keywords: graceful; edge-graceful; super edge-graceful; super vertex-graceful; amalgamation; trees; unicyclic graphs
Keywords: graceful; edge-graceful; super edge-graceful; super vertex-graceful; amalgamation; trees; unicyclic graphs
@article{CMJ_2009__59_1_a0,
author = {Lee, Sin-Min and Leung, Elo and Ng, Ho Kuen},
title = {On super vertex-graceful unicyclic graphs},
journal = {Czechoslovak Mathematical Journal},
pages = {1--22},
publisher = {mathdoc},
volume = {59},
number = {1},
year = {2009},
mrnumber = {2486612},
zbl = {1224.05447},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2009__59_1_a0/}
}
Lee, Sin-Min; Leung, Elo; Ng, Ho Kuen. On super vertex-graceful unicyclic graphs. Czechoslovak Mathematical Journal, Tome 59 (2009) no. 1, pp. 1-22. http://geodesic.mathdoc.fr/item/CMJ_2009__59_1_a0/