Unconditional ideals of finite rank operators
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 1257-1278.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $X$ be a Banach space. We give characterizations of when ${\cal F}(Y,X)$ is a $u$-ideal in ${\cal W}(Y,X)$ for every Banach space $Y$ in terms of nets of finite rank operators approximating weakly compact operators. Similar characterizations are given for the cases when ${\cal F}(X,Y)$ is a $u$-ideal in ${\cal W}(X,Y)$ for every Banach space $Y$, when ${\cal F}(Y,X)$ is a $u$-ideal in ${\cal W}(Y,X^{**})$ for every Banach space $Y$, and when ${\cal F}(Y,X)$ is a $u$-ideal in ${\cal K}(Y,X^{**})$ for every Banach space $Y$.
Classification : 46B04, 46B20, 46B28, 47L20
Keywords: $u$-ideals; finite rank; compact; and weakly compact operators; Hahn-Banach extension operators
@article{CMJ_2008__58_4_a29,
     author = {Abrahamsen, Trond A. and Lima, Asvald and Lima, Vegard},
     title = {Unconditional ideals of finite rank operators},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1257--1278},
     publisher = {mathdoc},
     volume = {58},
     number = {4},
     year = {2008},
     mrnumber = {2471182},
     zbl = {1174.46003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008__58_4_a29/}
}
TY  - JOUR
AU  - Abrahamsen, Trond A.
AU  - Lima, Asvald
AU  - Lima, Vegard
TI  - Unconditional ideals of finite rank operators
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 1257
EP  - 1278
VL  - 58
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008__58_4_a29/
LA  - en
ID  - CMJ_2008__58_4_a29
ER  - 
%0 Journal Article
%A Abrahamsen, Trond A.
%A Lima, Asvald
%A Lima, Vegard
%T Unconditional ideals of finite rank operators
%J Czechoslovak Mathematical Journal
%D 2008
%P 1257-1278
%V 58
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2008__58_4_a29/
%G en
%F CMJ_2008__58_4_a29
Abrahamsen, Trond A.; Lima, Asvald; Lima, Vegard. Unconditional ideals of finite rank operators. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 1257-1278. http://geodesic.mathdoc.fr/item/CMJ_2008__58_4_a29/