The sharpness of convergence results for $q$-Bernstein polynomials in the case $q>1$
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 1195-1206.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Due to the fact that in the case $q>1$ the $q$-Bernstein polynomials are no longer positive linear operators on $C[0,1],$ the study of their convergence properties turns out to be essentially more difficult than that for $q1.$ In this paper, new saturation theorems related to the convergence of $q$-Bernstein polynomials in the case $q>1$ are proved.
Classification : 30E10, 33D45, 41A10
Keywords: $q$-integers; $q$-binomial coefficients; $q$-Bernstein polynomials; uniform convergence; analytic function; Cauchy estimates
@article{CMJ_2008__58_4_a23,
     author = {Ostrovska, Sofiya},
     title = {The sharpness of convergence results for $q${-Bernstein} polynomials in the case $q>1$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1195--1206},
     publisher = {mathdoc},
     volume = {58},
     number = {4},
     year = {2008},
     mrnumber = {2471176},
     zbl = {1174.41010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008__58_4_a23/}
}
TY  - JOUR
AU  - Ostrovska, Sofiya
TI  - The sharpness of convergence results for $q$-Bernstein polynomials in the case $q>1$
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 1195
EP  - 1206
VL  - 58
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008__58_4_a23/
LA  - en
ID  - CMJ_2008__58_4_a23
ER  - 
%0 Journal Article
%A Ostrovska, Sofiya
%T The sharpness of convergence results for $q$-Bernstein polynomials in the case $q>1$
%J Czechoslovak Mathematical Journal
%D 2008
%P 1195-1206
%V 58
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2008__58_4_a23/
%G en
%F CMJ_2008__58_4_a23
Ostrovska, Sofiya. The sharpness of convergence results for $q$-Bernstein polynomials in the case $q>1$. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 1195-1206. http://geodesic.mathdoc.fr/item/CMJ_2008__58_4_a23/