Exchange rings in which all regular elements are one-sided unit-regular
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 899-910.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $R$ be an exchange ring in which all regular elements are one-sided unit-regular. Then every regular element in $R$ is the sum of an idempotent and a one-sided unit. Furthermore, we extend this result to exchange rings satisfying related comparability.
Classification : 16D70, 16E20, 16E50, 16U60, 16U99
Keywords: exchange ring; one-sided unit-regularity; idempotent
@article{CMJ_2008__58_4_a2,
     author = {Chen, Huanyin},
     title = {Exchange rings in which all regular elements are one-sided unit-regular},
     journal = {Czechoslovak Mathematical Journal},
     pages = {899--910},
     publisher = {mathdoc},
     volume = {58},
     number = {4},
     year = {2008},
     mrnumber = {2471155},
     zbl = {1166.16004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008__58_4_a2/}
}
TY  - JOUR
AU  - Chen, Huanyin
TI  - Exchange rings in which all regular elements are one-sided unit-regular
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 899
EP  - 910
VL  - 58
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008__58_4_a2/
LA  - en
ID  - CMJ_2008__58_4_a2
ER  - 
%0 Journal Article
%A Chen, Huanyin
%T Exchange rings in which all regular elements are one-sided unit-regular
%J Czechoslovak Mathematical Journal
%D 2008
%P 899-910
%V 58
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2008__58_4_a2/
%G en
%F CMJ_2008__58_4_a2
Chen, Huanyin. Exchange rings in which all regular elements are one-sided unit-regular. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 899-910. http://geodesic.mathdoc.fr/item/CMJ_2008__58_4_a2/