Some properties of relatively strong pseudocompactness
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 1145-1152.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, we study some properties of relatively strong pseudocompactness and mainly show that if a Tychonoff space $X$ and a subspace $Y$ satisfy that $Y\subset \overline {{\rm Int} Y}$ and $Y$ is strongly pseudocompact and metacompact in $X$, then $Y$ is compact in $X$. We also give an example to demonstrate that the condition $Y\subset \overline {{\rm Int} Y}$ can not be omitted.
Classification : 54D20, 54D30
Keywords: relative topological properties; pseudocompact spaces; compact space
@article{CMJ_2008__58_4_a19,
     author = {Zhang, Guo-Fang},
     title = {Some properties of relatively strong pseudocompactness},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1145--1152},
     publisher = {mathdoc},
     volume = {58},
     number = {4},
     year = {2008},
     mrnumber = {2471172},
     zbl = {1174.54016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008__58_4_a19/}
}
TY  - JOUR
AU  - Zhang, Guo-Fang
TI  - Some properties of relatively strong pseudocompactness
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 1145
EP  - 1152
VL  - 58
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008__58_4_a19/
LA  - en
ID  - CMJ_2008__58_4_a19
ER  - 
%0 Journal Article
%A Zhang, Guo-Fang
%T Some properties of relatively strong pseudocompactness
%J Czechoslovak Mathematical Journal
%D 2008
%P 1145-1152
%V 58
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2008__58_4_a19/
%G en
%F CMJ_2008__58_4_a19
Zhang, Guo-Fang. Some properties of relatively strong pseudocompactness. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 1145-1152. http://geodesic.mathdoc.fr/item/CMJ_2008__58_4_a19/