The postage stamp problem and arithmetic in base $r$
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 1097-1100
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $h,k$ be fixed positive integers, and let $A$ be any set of positive integers. Let $hA:=\{a_1+a_2+\cdots +a_r\colon a_i \in A, r \le h\}$ denote the set of all integers representable as a sum of no more than $h$ elements of $A$, and let $n(h,A)$ denote the largest integer $n$ such that $\{1,2,\ldots ,n\} \subseteq hA$. Let $n(h,k):=\max _A\colon n(h,A)$, where the maximum is taken over all sets $A$ with $k$ elements. We determine $n(h,A)$ when the elements of $A$ are in geometric progression. In particular, this results in the evaluation of $n(h,2)$ and yields surprisingly sharp lower bounds for $n(h,k)$, particularly for $k=3$.
@article{CMJ_2008__58_4_a15,
author = {Tripathi, Amitabha},
title = {The postage stamp problem and arithmetic in base $r$},
journal = {Czechoslovak Mathematical Journal},
pages = {1097--1100},
publisher = {mathdoc},
volume = {58},
number = {4},
year = {2008},
mrnumber = {2471168},
zbl = {1174.11013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008__58_4_a15/}
}
Tripathi, Amitabha. The postage stamp problem and arithmetic in base $r$. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 4, pp. 1097-1100. http://geodesic.mathdoc.fr/item/CMJ_2008__58_4_a15/