Affine completeness and wreath product decompositions of lattice ordered group
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 3, pp. 717-723
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $\Delta $ and $H$ be a nonzero abelian linearly ordered group or a nonzero abelian lattice ordered group, respectively. In this paper we prove that the wreath product of $\Delta $ and $H$ fails to be affine complete.
@article{CMJ_2008__58_3_a9,
author = {Jakub{\'\i}k, J\'an},
title = {Affine completeness and wreath product decompositions of lattice ordered group},
journal = {Czechoslovak Mathematical Journal},
pages = {717--723},
publisher = {mathdoc},
volume = {58},
number = {3},
year = {2008},
mrnumber = {2455933},
zbl = {1174.06338},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008__58_3_a9/}
}
Jakubík, Ján. Affine completeness and wreath product decompositions of lattice ordered group. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 3, pp. 717-723. http://geodesic.mathdoc.fr/item/CMJ_2008__58_3_a9/