On Lipschitz and d.c. surfaces of finite codimension in a Banach space
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 3, pp. 849-864.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Properties of Lipschitz and d.c. surfaces of finite codimension in a Banach space and properties of generated $\sigma $-ideals are studied. These $\sigma $-ideals naturally appear in the differentiation theory and in the abstract approximation theory. Using these properties, we improve an unpublished result of M. Heisler which gives an alternative proof of a result of D. Preiss on singular points of convex functions.
Classification : 46T05, 47H05, 58C20
Keywords: Banach space; Lipschitz surface; d.c. surface; multiplicity points of monotone operators; singular points of convex functions; Aronszajn null sets
@article{CMJ_2008__58_3_a18,
     author = {Zaj{\'\i}\v{c}ek, Lud\v{e}k},
     title = {On {Lipschitz} and d.c. surfaces of finite codimension in a {Banach} space},
     journal = {Czechoslovak Mathematical Journal},
     pages = {849--864},
     publisher = {mathdoc},
     volume = {58},
     number = {3},
     year = {2008},
     mrnumber = {2455942},
     zbl = {1174.46040},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2008__58_3_a18/}
}
TY  - JOUR
AU  - Zajíček, Luděk
TI  - On Lipschitz and d.c. surfaces of finite codimension in a Banach space
JO  - Czechoslovak Mathematical Journal
PY  - 2008
SP  - 849
EP  - 864
VL  - 58
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2008__58_3_a18/
LA  - en
ID  - CMJ_2008__58_3_a18
ER  - 
%0 Journal Article
%A Zajíček, Luděk
%T On Lipschitz and d.c. surfaces of finite codimension in a Banach space
%J Czechoslovak Mathematical Journal
%D 2008
%P 849-864
%V 58
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2008__58_3_a18/
%G en
%F CMJ_2008__58_3_a18
Zajíček, Luděk. On Lipschitz and d.c. surfaces of finite codimension in a Banach space. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 3, pp. 849-864. http://geodesic.mathdoc.fr/item/CMJ_2008__58_3_a18/