Minimal claw-free graphs
Czechoslovak Mathematical Journal, Tome 58 (2008) no. 3, pp. 787-798
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A graph $G$ is a minimal claw-free graph (m.c.f. graph) if it contains no $K_{1,3}$ (claw) as an induced subgraph and if, for each edge $e$ of $G$, $G-e$ contains an induced claw. We investigate properties of m.c.f. graphs, establish sharp bounds on their orders and the degrees of their vertices, and characterize graphs which have m.c.f. line graphs.
@article{CMJ_2008__58_3_a14,
author = {Dankelmann, P. and Swart, Henda C. and van den Berg, P. and Goddard, W. and Plummer, M. D.},
title = {Minimal claw-free graphs},
journal = {Czechoslovak Mathematical Journal},
pages = {787--798},
publisher = {mathdoc},
volume = {58},
number = {3},
year = {2008},
mrnumber = {2455938},
zbl = {1174.05107},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2008__58_3_a14/}
}
TY - JOUR AU - Dankelmann, P. AU - Swart, Henda C. AU - van den Berg, P. AU - Goddard, W. AU - Plummer, M. D. TI - Minimal claw-free graphs JO - Czechoslovak Mathematical Journal PY - 2008 SP - 787 EP - 798 VL - 58 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMJ_2008__58_3_a14/ LA - en ID - CMJ_2008__58_3_a14 ER -
Dankelmann, P.; Swart, Henda C.; van den Berg, P.; Goddard, W.; Plummer, M. D. Minimal claw-free graphs. Czechoslovak Mathematical Journal, Tome 58 (2008) no. 3, pp. 787-798. http://geodesic.mathdoc.fr/item/CMJ_2008__58_3_a14/